数学常用公式定理1数学常用公式定理2数学常用公式定理3数学常用公式定理5数学常用公式定理6行列式
行列式概念
逆序数
排列$i_1 i_2 i_3 i_4$的逆序数记为$\tau (i_1 i_2 i_3 i_4)$
二阶行列式
$ $ \begin{align*} \begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21} \end{align*} $ $
三阶行列式
$ $ \begin{align*} \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{matrix} a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}\\ -a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32} \end{matrix} \end{align*} $ $
定义计算三阶行列式
将三阶行列式分为如下六项,取每项$a_{ij}$中的$j$并组成排列,再取排列的逆序数,若逆序数为偶数,则该项为正,反之为负。三、四阶行列式使然
$ $ \begin{align*} \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \left\{\begin{matrix} a_{11}\left\{\begin{matrix} a_{22} \left\{\begin{matrix} a_{33} \space \left [ \tau \left ( 123 \right )=0 \right ] \end{matrix}\right.\\ a_{23} \left\{\begin{matrix} a_{32} \space \left [ \tau \left ( 132 \right )=1 \right ] \end{matrix}\right.\\ \end{matrix}\right.\\ a_{12}\left\{\begin{matrix} a_{21} \left\{\begin{matrix} a_{33} \space \left [ \tau \left ( 213 \right )=1 \right ] \end{matrix}\right.\\ a_{23} \left\{\begin{matrix} a_{31} \space \left [ \tau \left ( 231 \right )=2 \right ] \end{matrix}\right.\\ \end{matrix}\right.\\ a_{13} \left\{\begin{matrix} a_{21} \left\{\begin{matrix} a_{32} \space \left [ \tau \left ( 312 \right )=2 \right ] \end{matrix}\right.\\ a_{22} \left\{\begin{matrix} a_{31} \space \left [ \tau \left ( 321 \right )=3 \right ] \end{matrix}\right.\\ \end{matrix}\right. \end{matrix}\right. \end{align*} $ $
余子式与代数余子式
把$\eqref {eq3}$中元素$a_{ij}$所在的第$i$行元素和第$j$列元素去掉,剩下的$n-1$行$n-1$列元素按照原排列次序构成的$n-1$阶行列式,称为元素$a_{ij}$的余子式,记为$M_{ij}$,并称$A_{ij}=(-1)^{i+j}M_{ij}$为元素$a_{ij}$的代数余子式
$ $ \begin{align} \label {eq3} D= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \end{align} $ $
特殊行列式
对角、上(下)三角行列式
$ $ \begin{align*} \begin{vmatrix} a_{11} & 0 & \cdots & 0\\ 0 & a_{22} & \cdots & 0\\ \vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ 0 & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & \cdots & 0\\ a_{21} & a_{22} & \cdots & 0\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn} \end{align*} $ $
范德蒙行列式
其中$\prod$表示全体同类因子的乘积
$ $ \begin{align*} D_n=\begin{vmatrix} 1 & 1 & \cdots & 1\\ x_1 & x_2 & \cdots & x_n\\ x_1^2 & x_2^2 & \cdots & x_n^2\\ \vdots & \vdots & & \vdots\\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod \limits_{n\ge i \gt j\ge 1}^{}(x_i-x_j) \end{align*} $ $
例: $ $ \begin{align*} &D_2=\begin{vmatrix} 1 & 1\\ x_1 & x_2 \end{vmatrix}=(x_2-x_1) \\ &D_3=\begin{vmatrix} 1 & 1 & 1\\ x_1 & x_2 & x_3\\ x_1^2 & x_2^2 & x_3^2 \end{vmatrix} = (x_3-x_1)(x_3-x_2)(x_2-x_1) \\ &D_4=\begin{vmatrix} 1 & 1 & 1 & 1\\ x_1 & x_2 & x_3 & x_4\\ x_1^2 & x_2^2 & x_3^2 & x_4^2\\ x_1^3 & x_2^3 & x_3^3 & x_4^3 \end{vmatrix} = \begin{matrix} (x_4-x_1)(x_4-x_2)(x_4-x_3)\\ (x_3-x_1)(x_3-x_2)(x_2-x_1) \end{matrix} \end{align*} $ $
行列式的性质
计算性质
性质1:行列式与其转置行列式相等
$ $ \begin{align*} \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & a_{31}\\ a_{12} & a_{22} & a_{32}\\ a_{13} & a_{23} & a_{33} \end{vmatrix} \end{align*} $ $
性质2:对调两行或两列,行列式改变符号
$ $ \begin{align*} \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = -\begin{vmatrix} a_{21} & a_{22} & a_{23}\\ a_{11} & a_{12} & a_{13}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = -\begin{vmatrix} a_{12} & a_{11} & a_{13}\\ a_{22} & a_{21} & a_{23}\\ a_{32} & a_{31} & a_{33} \end{vmatrix} \end{align*} $ $
性质2推论:由性质2得,如果行列式有两行或两列完全相同,行列式的值为零,$D=-D\Rightarrow D=0$
$ $ \begin{align*} \begin{vmatrix} l_{1} & l_{2} & l_{3}\\ l_{1} & l_{2} & l_{3}\\ l_{4} & l_{5} & l_{6} \end{vmatrix} = -\begin{vmatrix} l_{1} & l_{2} & l_{3}\\ l_{1} & l_{2} & l_{3}\\ l_{4} & l_{5} & l_{6} \end{vmatrix} \end{align*} $ $
性质3:行列式某行或某列有公因子可以提取到行列式的外面
$ $ \begin{align*} \begin{vmatrix} 3a_{11} & 3a_{12} & 3a_{13}\\ 6a_{21} & a_{22} & a_{23}\\ 9a_{31} & a_{32} & a_{33} \end{vmatrix} = 3\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ 6a_{21} & a_{22} & a_{23}\\ 9a_{31} & a_{32} & a_{33} \end{vmatrix} = 3\begin{vmatrix} a_{11} & 3a_{12} & 3a_{13}\\ 2a_{21} & a_{22} & a_{23}\\ 3a_{31} & a_{32} & a_{33} \end{vmatrix} \end{align*} $ $
性质4:行列式中如果有两行或两列元素成正比,则行列式值为零,$2D=-2D \Rightarrow D=0$
$ $ \begin{align*} \begin{vmatrix} l_{1} & l_{2} & l_{3}\\ 2l_{1} & 2l_{2} & 2l_{3}\\ l_{4} & l_{5} & l_{6} \end{vmatrix} \Rightarrow 2\begin{vmatrix} l_{1} & l_{2} & l_{3}\\ l_{1} & l_{2} & l_{3}\\ l_{4} & l_{5} & l_{6} \end{vmatrix} = -2\begin{vmatrix} l_{1} & l_{2} & l_{3}\\ l_{1} & l_{2} & l_{3}\\ l_{4} & l_{5} & l_{6} \end{vmatrix} \end{align*} $ $
性质5:行列式某一行或某一列的元素都是两数之和,则行列式可拆分为两个行列式之和
$ $ \begin{align*} \begin{vmatrix} l_{1} & l_{2} & l_{3}\\ l_{4}+l_{10} & l_{5}+l_{11} & l_{6}+l_{12}\\ l_{7} & l_{8} & l_{9} \end{vmatrix} = \begin{vmatrix} l_{1} & l_{2} & l_{3}\\ l_{4} & l_{5} & l_{6}\\ l_{7} & l_{8} & l_{9} \end{vmatrix} + \begin{vmatrix} l_{1} & l_{2} & l_{3}\\ l_{10} & l_{11} & l_{12}\\ l_{7} & l_{8} & l_{9} \end{vmatrix} \end{align*} $ $
性质6:行列式的某一行(列)的各元素乘同一数然后加到另一行(列)的对应元素上,行列式的值不变
$ $ \begin{align*} \begin{vmatrix} l_{1} & l_{2} & l_{3}\\ l_{4} & l_{5} & l_{6}\\ l_{7} & l_{8} & l_{9} \end{vmatrix} = \begin{vmatrix} l_{1} & l_{2} & l_{3}\\ l_{4}+3l_{1} & l_{5}+3l_{2} & l_{6}+3l_{3}\\ l_{7} & l_{8} & l_{9} \end{vmatrix} \end{align*} $ $
性质7:行列式某一行或某一列的元素全为零,则行列式值为零
$ $ \begin{align*} \begin{vmatrix} 0 & a_{12} & a_{13}\\ 0 & a_{22} & a_{23}\\ 0 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0 \end{align*} $ $
展开性质
行列式展开法则:行列式等于它的任一行或列的各元素与其对应的代数余子式的乘积之和
$ $ \begin{align*} D &= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}\\ &=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots +a_{in}A_{in}\space (i=1,2,3,\cdots ,n)\\ &=a_{1j}A_{1j}+a_{2j}A_{2j}+\cdots +a_{nj}A_{nj}\space (j=1,2,3,\cdots ,n) \end{align*} $ $
例: $ $ \begin{align*} D&=\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}\\ &= a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13}=a_{11}A_{11}+a_{21}A_{21}+a_{31}A_{31} \end{align*} $ $
推论1:一个$n$阶行列式,如果其中第$i$行所有元素除$(i,j)$元$a_{i,j}$外都为零,那么该行列式等于$a_{i,j}$和它的代数余子式的乘积
$ $ \begin{align*} \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ 0 & a_{22} & 0\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{22}A_{22} \end{align*} $ $
推论2:行列式的某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零
$ $ \begin{align*} a_{i1}A_{j1}+a_{i2}A_{j2}+\cdots +a_{in}A_{jn}=0 \space (i \ne j) \end{align*} \begin{align*} a_{1i}A_{1j}+a_{2i}A_{2j}+\cdots +a_{ni}A_{nj}=0 \space (i \ne j) \end{align*} $ $
例: $ $ \begin{align*} D=\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} \Rightarrow a_{11}A_{21}+a_{12}A_{22}+a_{13}A_{23}=0 \end{align*} $ $
拉普拉斯行列式
设$A$为$m$阶矩阵,$B$为$n$阶矩阵,$C$为$n \times m$阶矩阵,$O$为零矩阵,则对应分块矩阵的行列式可以进行如下运算
$ $ \begin{gather*} \begin{vmatrix} A & O\\ O & B \end{vmatrix} = \begin{vmatrix} A & C\\ O & B \end{vmatrix} = \begin{vmatrix} A & O\\ C & B \end{vmatrix} = \begin{vmatrix} A \end{vmatrix}\begin{vmatrix} B \end{vmatrix}\\ \begin{vmatrix} O & A\\ B & O \end{vmatrix} = \begin{vmatrix} C & A\\ B & O \end{vmatrix} = \begin{vmatrix} O & A\\ B & C \end{vmatrix} = (-1)^{mn} \begin{vmatrix} A \end{vmatrix}\begin{vmatrix} B \end{vmatrix} \end{gather*} $ $
克莱姆法则(克拉默法则)
注意:只有当方程组中的方程个数与未知数个数相等时才可以使用克莱姆法则;即,如果方程组由$n$个线性方程组成,那么每个线性方程中必须包含$n$个未知数.
设,由$n$个线性方程组成的齐次方程组$\eqref {eq23}$,其中每个线性方程包含$n$个未知数,当$\eqref {eq23}$中的齐次线性方程不等于$0$时,有非齐次线性方程组$\eqref {eq24}$
$ $ \begin{align} \label {eq23} \left\{ \begin{array}{lll} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}=0 \\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}=0 \\ \vdots\\ a_{n1}x_{1}+a_{n2}x_{2}+\cdots +a_{nn}x_{n}=0 \end{array} \right. \end{align} \begin{align} \label {eq24} \left\{ \begin{array}{lll} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}=b_{1} \\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}=b_{2} \\ \vdots\\ a_{n1}x_{1}+a_{n2}x_{2}+\cdots +a_{nn}x_{n}=b_{n} \end{array} \right. \end{align} $ $
$\eqref {eq23} \eqref {eq24}$ 的系数行列式 $\eqref {eq25}$
$ $ \begin{align} \label {eq25} D=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \end{align} $ $
定理1
方程组$\eqref {eq23}$只有零解的充分必要条件是$D\ne 0$;方程组$\eqref {eq23}$有非零解(或有无穷多个解)的充分必要条件是$D=0$
定理2
方程组$\eqref {eq24}$有唯一解的充分必要条件是$D\ne 0$,此时$x_i=\frac {D_i}{D} \space (i=1,2,\cdots,n)$,当$D=0$时,方程组$\eqref {eq24}$要么无解,要么有无穷多个解
在定理2中,$D_i$代表将系数行列式$D$的第$i$列,替换成线性方程组中的值向量,即:
$ $ \begin{align*} D_i \space (i=1,2,\cdots,n)\Rightarrow D_1=\begin{vmatrix} b_1 & a_{12} & \cdots & a_{1n}\\ b_2 & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ b_n & a_{n2} & \cdots & a_{nn} \end{vmatrix} \cdots\space D_n=\begin{vmatrix} a_{11} & a_{12} & \cdots & b_1\\ a_{21} & a_{22} & \cdots & b_2\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & b_n \end{vmatrix} \end{align*} $ $
矩阵
矩阵概念
$m$行$n$列矩阵,简称$m \times n$矩阵,拥有$m \times n$个元(元素),以数$a_{ij}$为$(i,j)$元的矩阵可记作$(a_{i,j})$或$(a_{i,j})_{m \times n}$,$m \times n$矩阵$A$记作$A_{m \times n}$
$ $ \begin{align*} A_{m\times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \end{align*} $ $
$n$阶矩阵($n$阶方阵)
行数和列数都等于$n$的矩阵称为$n$阶矩阵或$n$阶方阵,$n$阶矩阵$A$记作$A_n$
$ $ \begin{align*} A_{n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \end{align*} $ $
同型矩阵
两个矩阵的行数相等,列数也相等,称它们为同型矩阵
相等矩阵
在同型矩阵的前提下,如果矩阵$A、B$的对应元素相等,则称两个矩阵相等,即$A=B$
零矩阵
元素全部为$0$的矩阵称为零矩阵,记作$O$
$ $ \begin{align*} O = \begin{pmatrix} 0 & 0 & \cdots & 0\\ 0 & 0 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & 0 \end{pmatrix} \end{align*} $ $
对角矩阵
除对角线外都为$0$的矩阵称为对角矩阵
$ $ \begin{align*} A_n = \begin{pmatrix} l_1 & 0 & \cdots & 0\\ 0 & l_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & l_n \end{pmatrix} \end{align*} $ $
单位矩阵
对角线上的元素都是$1$,其他元素都是$0$的方阵,称为单位矩阵
$ $ \begin{align*} E = \begin{pmatrix} 1 & 0 & \cdots & 0\\ 0 & 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & 1 \end{pmatrix} \end{align*} $ $
向量矩阵
行矩阵又称行向量,只有一行
$ $ \begin{align*} A = \begin{pmatrix} a_{1} & a_{2} & \cdots & a_{n} \end{pmatrix} \end{align*} $ $
列矩阵又称列向量,只有一列
$ $ \begin{align*} B = \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{pmatrix} \end{align*} $ $
增广矩阵
有非齐次线性方程组
$ $ \begin{align*} \left\{ \begin{array}{lll} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}=b_{1} \\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}=b_{2} \\ \vdots\\ a_{m1}x_{1}+a_{m2}x_{2}+\cdots +a_{mn}x_{n}=b_{m} \end{array} \right. \end{align*} $ $
该方程组可表示为$Ax=b$,其中$A$称为系数矩阵,$x$称为未知数矩阵,$b$称为常数项矩阵
$ $ \begin{align*} A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} , x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} , b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \end{align*} $ $
将常数项矩阵$b$添加到系数矩阵$A$的右边,得到增广矩阵$B = \left ( \begin{array} {c:c} A & b\end{array}\right)$,书写时通常不写矩阵中的增广线“$\begin{array} {c:c} & \end{array}$”
$ $ \begin{align*} B = \left ( \begin{array} {c:c} A & b \end{array} \right) = \left ( \begin{array} {cccc:c} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_n \end{array} \right) \end{align*} $ $
矩阵的运算
加减运算
只有当两个矩阵是同型矩阵时,才能进行加减运算
$ $ \begin{align*} A = \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix} , B = \begin{pmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33} \end{pmatrix} \end{align*} \begin{align*} A\pm B = \begin{pmatrix} a_{11}\pm b_{11} & a_{12}\pm b_{12} & a_{13}\pm b_{13}\\ a_{21}\pm b_{21} & a_{22}\pm b_{22} & a_{23}\pm b_{23}\\ a_{31}\pm b_{31} & a_{32}\pm b_{32} & a_{33}\pm b_{33} \end{pmatrix} \end{align*} $ $
满足以下规律
- $A+B=B+A$
- $(A+B)+C=A+(B+C)$
数与矩阵相乘
$ $ \begin{align*} A = \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix} \end{align*} \begin{align*} kA = \begin{pmatrix} ka_{11} & ka_{12} & ka_{13}\\ ka_{21} & ka_{22} & ka_{23}\\ ka_{31} & ka_{32} & ka_{33} \end{pmatrix} \end{align*} $ $
满足以下规律($k$和$l$为数)
- $klA=k(lA)$
- $(k+l)A=kA+lA$
- $k(A+B)=kA+kB$
矩阵与矩阵相乘
只有当第一个矩阵的列数与第二个矩阵的行数相等时,两个矩阵才能相乘,即$A_{m \times s} \times B_{s \times n} = C_{mn}$
$ $ \begin{align*} A = \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23} \end{pmatrix} , B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} \end{align*} \begin{align*} A \times B=C=\begin{pmatrix} c_{11} & c_{12}\\ c_{21} & c_{22} \end{pmatrix} \end{align*} $ $
矩阵$C$的各元素为
$ $ \begin{align*} \begin{array} {c} c_{11}=a_{11}b_{11}+a_{12}b_{21}+a_{13}b_{31}\\ c_{12}=a_{11}b_{12}+a_{12}b_{22}+a_{13}b_{32}\\ c_{21}=a_{21}b_{11}+a_{22}b_{21}+a_{23}b_{31}\\ c_{22}=a_{21}b_{12}+a_{22}b_{22}+a_{23}b_{32} \end{array} \end{align*} $ $
矩阵与矩阵相乘满足如下规律
- $(AB)C=A(BC)$
- $k(AB)=(kA)B=A(kB)$
- $A(B+C)=AB+AC,(B+C)A=BA+CA$
转置矩阵
把矩阵$A$的行换成同序数的列得到一个新矩阵,叫做$A$的转置矩阵,记作$A^T$
$ $ \begin{gather*} A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \\ \Downarrow \\ A^T = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1}\\ a_{12} & a_{22} & \cdots & a_{m2}\\ \vdots & \vdots & & \vdots\\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix} \end{gather*} $ $
如果$A$为$n$阶方阵,满足$A^T=A$,那么称$A$为对称矩阵,对称矩阵的特点是,以对角线为对称轴,左下和右上的元素对应相等
$ $ \begin{align*} A = \begin{pmatrix} l_{1} & x_{1} & x_{2}\\ x_{1} & l_{2} & x_{3}\\ x_{2} & x_{3} & l_{3} \end{pmatrix} =A^T \end{align*} $ $
转置矩阵满足如下规律
- $(A^T)^T=A$
- $(A+B)^T=A^T+B^T$
- $(kA)^T=kA^T$
- $(AB)^T=B^TA^T$
伴随矩阵
方阵的行列式:由$n$阶方阵$A$的元素所构成的行列式,称为方阵$A$的行列式,记作$|A|$
方阵的行列式计算满足如下规律
- $|A^T|=|A|$
- $|kA| = k^n|A|$
- $|AB| = |A||B|$
行列式$|A|$的各个元素的代数余子式$A_{ij}$所构成的矩阵,称为$A$的伴随矩阵,记作$A^{*}$
$A^{*}$由$|A|$的各元素对应的代数余子式组成的矩阵转置得到
$ $ \begin{align*} A^{*}= \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1}\\ A_{12} & A_{22} & \cdots & A_{n2}\\ \vdots & \vdots & & \vdots\\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} \end{align*} $ $
伴随矩阵满足以下运算规律
- $AA^{*}=A^{*}A=\left|A\right|E$
- $\left|A^{*}\right| = \left|A\right|^{n-1}$
- $(A^T)^{*} = (A^{*})^T$
- $(A^{-1})^{*} = (A^{*})^{-1}$
- $(AB)^{*} = B^{*}A^{*}$
- $(A^{*})^{*}=|A|^{n-2}A$
可逆矩阵
对于$n$阶矩阵$A$,如果有一个$n$阶矩阵$B$,使$AB=BA=E$,则说矩阵$A$是可逆的,并把$B$称为$A$的逆矩阵,$A$的逆矩阵记作$A^{-1}$,即$B=A^{-1}$
如果矩阵$A$是可逆的,那么$A$的逆矩阵是唯一的
定理1
若矩阵$A$可逆,则$|A| \ne 0$
定理2
若$|A| \ne 0$,则矩阵$A$可逆,且$A^{-1}=\frac {1}{|A|}A^{*}$(当$|A| = 0$时,$|A|$称为奇异矩阵,否则称非奇异矩阵)
可逆矩阵满足以下运算规律
- 若$A$可逆,则$A^{-1}$也可逆,且$(A^{-1})^{-1}=A$,$\left |A^{-1} \right | = \left |A\right |^{-1} = \frac {1}{\left |A\right |}$
- 若$A$可逆,数$k \ne 0$,则$kA$可逆,且$(kA)^{-1}=\frac {1}{k}A^{-1}$
- 若$A$、$B$为同阶矩阵且均可逆,则$AB$也可逆,且$(AB)^{-1}=B^{-1}A^{-1}$
- 若$A$可逆,则$A^T$也可逆,且$(A^T)^{-1}=(A^{-1})^T$
数学常用公式定理1数学常用公式定理2数学常用公式定理3数学常用公式定理5数学常用公式定理6