创建操作
数组
通过调用Arrays.stream(T[])
取得数组的stream
流
1 2 3 4 5 6 7 8 9
| String[] strArr = new String[]{"a1", "a2", "a3"}; Stream<String> stream = Arrays.stream(strArr);
stream.forEach(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } });
|
单列集合
单列集合直接通过集合中所属的方法调用,取得集合的stream
流
1 2 3 4 5 6 7 8 9 10
| List<String> list = new ArrayList<>(); Collections.addAll(list, "a1", "a2", "a3");
Stream<String> stream = list.stream(); stream.forEach(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } });
|
双列集合
双列集合无法像单列集合一样直接通过函数调用得到stream
流,所以只能通过entrySet()
或keySet()
取得单列集合,然后再取得stream
流
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| Map<String, String> map = new HashMap<>(); map.put("key1", "val1"); map.put("key2", "val2"); map.put("key3", "val3");
Set<String> keySet = map.keySet(); Stream<String> stream = keySet.stream(); stream.forEach(new Consumer<String>() { @Override public void accept(String key) { String val = map.get(key); System.out.println("key=" + key + " - val=" + val); } });
Set<Map.Entry<String, String>> entrySet = map.entrySet(); Stream<Map.Entry<String, String>> stream1 = entrySet.stream(); stream1.forEach(new Consumer<Map.Entry<String, String>>() { @Override public void accept(Map.Entry<String, String> stringEntry) { System.out.println("key=" + stringEntry.getKey() + " - val=" + stringEntry.getValue()); } });
|
散元素
散元素又与以上三种方式不同,通过调用Stream
类下的静态方法of(T...)
来完成散元素的数据流
1 2 3 4 5 6 7 8 9 10 11
| String v1 = "val1"; String v2 = "val2"; String v3 = "val3";
Stream<String> stream = Stream.of(v1, v2, v3); stream.forEach(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } });
|
中间操作
filter(Predicate<T>)
筛选元素
在Predicate<T>
中重写test(T)
方法,test(T)
方法返回true
时,元素保留,否则元素被过滤
1 2 3 4 5 6 7 8 9 10 11
| stream.filter(new Predicate<String>() { @Override public boolean test(String s) { return s.startsWith("a"); } }).forEach(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } });
|
map(Function<T, R>)
转换流中元素的数据类型
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| List<String> list = new ArrayList<>(); Collections.addAll(list, "a1", "a2", "a3", "b1", "b2");
Stream<String> stream = list.stream(); stream.map(new Function<String, Integer>() { @Override public Integer apply(String str) { String number = str.substring(str.length() - 1); return Integer.parseInt(number); } }).forEach(new Consumer<Integer>() { @Override public void accept(Integer integer) { System.out.println(integer); } });
|
flatMap(Function<T, R>)
把流中的数据映射为新的流
通俗来讲,对stream
流中的子元素做一些操作,得到一个新的stream
流,新的stream
流将称为原来的流中的一部分,所以当把集合中的五个元素拆分为String
数组,并且把数组的stream
流return
后,那么现在的流中其实是拆分后的十个元素
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| List<String> list = new ArrayList<>(); Collections.addAll(list, "a1", "a2", "a3", "b1", "b2");
Stream<String> stream = list.stream(); List<String> collect = stream.flatMap(new Function<String, Stream<String>>() { @Override public Stream<String> apply(String str) { return Arrays.stream(str.split("")); } })
.collect(Collectors.toList());
System.out.println(collect);
|
sorted(Comparator<T>)
排序
说实话这个升序和降序返回-1
还是1
我每次都忘
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| List<String> list = new ArrayList<>(); Collections.addAll(list, "a1", "a2", "a3", "b1", "b2"); Collections.shuffle(list);
Stream<String> stream = list.stream(); stream.sorted(new Comparator<String>() { @Override public int compare(String s, String t) { int s1 = s.charAt(0); int t1 = t.charAt(0); int s2 = Integer.parseInt(s.split("")[1]); int t2 = Integer.parseInt(t.split("")[1]);
if (s1 != t1) return s1 - t1; else return s2 - t2; } }).forEach(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } });
|
limit(int)
截取元素
1 2 3 4 5 6 7 8
| stream.limit(3) .forEach(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } });
|
skip(int)
跳过元素
1 2 3 4 5 6 7 8
| stream.skip(1) .forEach(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } });
|
distinct()
元素去重
1 2 3 4 5 6 7
| stream.distinct() .forEach(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } });
|
peek(Consumer<T>)
用于观察元素的中间方法
其实和forEach(Consumer<T>)
差不多,但是作为中间方法会返回原来的stream
流,主要用于在开发过程中看一下元素是不是符合原来的预期
1 2 3 4 5 6
| stream.peek(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } }).count();
|
Stream.concat(Stream<T>, Stream<R>)
合并两个stream
1 2 3 4 5 6 7 8
| List<String> list = new ArrayList<>(); Collections.addAll(list, "a1", "a2", "a3", "b1", "b2");
List<String> list2 = new ArrayList<>(); Collections.addAll(list2, "s1", "s2");
Stream<String> concat = Stream.concat(list.stream(), list2.stream()); concat.forEach(System.out::println);
|
终结操作
forEach(Consumer<T>)
遍历
1 2 3 4 5 6
| stream.forEach(new Consumer<String>() { @Override public void accept(String s) { System.out.println(s); } });
|
count()
统计流长度
1
| long count = stream.count();
|
toArray()
收集流中的数据,放在数组中
1
| Object[] array = stream.toArray();
|
collect()
将流中的数据收集到集合中
将流中的数据收集到List
集合中
1
| stream.collect(Collectors.toList());
|
将流中的数据收集到Set
集合中
1
| stream.collect(Collectors.toSet());
|
将流中的数据收集到Map
集合中
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| List<String> list = new ArrayList<>(); Collections.addAll(list, "a1", "a2", "a3");
Stream<String> stream = list.stream();
Map<Integer, String> collect = stream.collect(Collectors.toMap(new Function<String, Integer>() { @Override public Integer apply(String s) { return Integer.parseInt(s.split("")[1]); } }, new Function<String, String>() { @Override public String apply(String s) { return s; } }));
|